378 research outputs found

    Multimode entanglement in coupled cavity arrays

    Full text link
    We study a driven-dissipative array of coupled nonlinear optical resonators by numerically solving the Von Neumann equation for the density matrix. We demonstrate that quantum correlated states of many photons can be generated also in the limit where the nonlinearity is much smaller than the losses, contrarily to common expectations. Quantum correlations in this case arise from interference between different pathways that the system can follow in the Hilbert space to reach its steady state under the effect of coherent driving fields. We characterize in particular two systems: a linear chain of three coupled cavities and an array of eight coupled cavities. We demonstrate the existence of a parameter range where the system emits photons with continuous-variable bipartite and quadripartite entanglement, in the case of the first and the second system respectively. This entanglement is shown to survive realistic rates of pure dephasing and opens a new perspective for the realization of quantum simulators or entangled photon sources without the challenging requirement of strong optical nonlinearities.Comment: 20 pages, 7 figure

    Critical behavior of dissipative two-dimensional spin lattices

    Full text link
    We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian and subject to incoherent spin flips. We determine the steady-state solution of the master equation for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and critical exponent of the magnetic linear susceptibility associated to a dissipative ferromagnetic transition. We show that the Von Neumann entropy increases across the critical point, revealing a strongly mixed character of the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information which exhibits a critical behavior at the transition point, showing that quantum correlations play a crucial role in the transition even though the system is in a mixed state.Comment: Accepted for publication on Phys. Rev. B (6 pages, 5 figures

    Polariton quantum blockade in a photonic dot

    Get PDF
    We investigate the quantum nonlinear dynamics of a resonantly excited photonic quantum dot embedding a quantum well in the strong exciton-photon coupling regime. Within a master equation approach, we study the polariton quantum blockade and the generation of single photon states due to polariton-polariton interactions as a function of the photonic dot geometry, spectral linewidths and energy detuning between quantum well exciton and confined photon mode. The second order coherence function g(2)(t,t′)g^{(2)}(t,t') is calculated for both continuous wave and pulsed excitations

    Spin-dependent properties of a two-dimensional electron gas with ferromagnetic gates

    Full text link
    A theoretical prediction of the spin-dependent electron self-energy and in-plane transport of a two-dimensional electron gas in proximity with a ferromagnetic gate is presented. The application of the predicted spin-dependent properties is illustrated by the proposal of a device configuration with two neighboring ferromagnetic gates which produces a magnetoresistance effect on the channel current generated by nonmagnetic source and drain contacts. Specific results are shown for a silicon inversion layer with iron gates. The gate leakage current is found to be beneficial to the spin effects.Comment: 3 pages, 2 figures, Replaced with revised versio

    Quantum squeezing generation versus photon localization in a disordered microcavity

    Get PDF
    We investigate theoretically the nonlinear dynamics induced by an intense pump field in a disordered planar microcavity. Through a self-consistent theory, we show how the generation of quantum optical noise squeezing is affected by the breaking of the in-plane translational invariance and the occurrence of photon localization. We find that the generation of single-mode Kerr squeezing for the ideal planar case can be prevented by disorder as a result of multimode nonlinear coupling, even when the other modes are in the vacuum state. However, the excess noise is a non-monotonous function of the disorder amplitude. In the strong localization limit, we show that the system becomes protected with respect to this fundamental coupling mechanism and that the ideal quadrature squeezing generation can be obtained
    • …
    corecore